
1

CS Uncovered #002

2

CS Uncovered #002

Fjoralba Nasto

3

CS Uncovered #002

Contents

Contents

The Art of
COMPILER CONSTRUCTION

Page 8

Page 4

SMART CITIES
and how they use technology

Page 18
PREDICTING STOCK PRICES
with Long Short-Term Memory

Page 22
Competitive Programming Vol. 2 —
Intro to Data Structures

Page 26

A (Brief) History of Linux

THE PUZZLE PAGES
Page 29

4

CS Uncovered #002

Predicting Stock prices with Long Short-Term Memory

‘Smart city’ is a term used for a city
which uses information and communi-
cation technology (ICT) to improve op-
erational efficiency, share information
with the public and provide a better
quality of government service and citi-
zen welfare. This is done by effectively
utilising a variety of software, user inter-
faces and communication networks
such as the Internet of Things (IoT), to
expand their reach and connectivity.

How Smart Cities Work
Smart cities follow four steps to improve
the quality of life and enable economic
growth through a network of connected
IoT devices and other technologies.
These steps are as follows:

1. Collection: smart sensors gather re-
al-time data

2. Analysis: The data is analysed to
gain insights into the operation of
city services and operations

3. Communication: The results of the
data analysis are communicated to
decision makers

4. Action: Action is taken to improve
operations, manage assets and im-

prove the quality of city life for the
residents

The Internet Of Things and
Smart Cities
It wasn’t long ago when the only way to
access the internet was through a desk-
top computer, but now pretty much an-
ything can connect to the internet – in-
cluding from your mobile phone, car,
fridge and on-street sensors. This is the
Internet of things (IoT).

The internet of Things is a network of
connected devices that communicate
and exchange data. This data collected
from these devices is stored in the cloud
or on servers to allow for improvements
to be made to both public and private
sector in the city.

However, despite the fact that IoT is one
of the key factors of a smart city, other
technologies might include:

− Application Programming Interfac-
es (APIs)

− Artificial Intelligence (AI)
− Cloud Computing Services
− Dashboards
− Machine Learning
− Machine-to-Machine Communica-

tions
− Mesh Networks

Fjoralba Nasto

SMART CITIES
and how they use technology

5

CS Uncovered #002

How Artificial Intelligence is
used in Smart Cities
Artificial intelligence is defined as the
intelligence of a computer to imitate hu-
man capabilities and the way that the
human brain works in applications of
any kind. These include expert systems,
natural language processing, speech
recognition and machine vision.

According to an article released by AI
Magazine, there are 10 ways that AI can
be used in smart cities:

1) Environment

Smart cities can use artificial intelli-
gence to see their effect on the local en-
vironment, global warming, as well as
the pollution level. Using AI and ma-
chine learning within pollution control
and energy consumption, allows author-
ities and cities to make well informed
decisions that are best for the environ-
ment. Smart cities also use AI to detect
CO2 which can then lead to decisions
around transportation.

2) Energy Tracking

Artificial intelligence can be used within
smart cities to analyse and track busi-
ness and citizen energy usage, with this
data it can then be decided where to
implicate renewable sources of energy.
This can also show cities where energy is
being wasted and how it can be saved.

3) Traffic Management

AI technology is being implemented
within the transportation industry to re-
duce traffic and accidents. A traffic man-
agement technology known as CIRCLES
has the ability to predict and reduce
traffic, using deep learning algorithms,
this can then reduce the pollution creat-
ed by traffic too. AI can also be used
throughout traffic camera systems to

detect road crimes in real time, making
them easier to deal with.

4) Waste Management

Smart cities are beginning to use artifi-
cial intelligence within their waste man-
agement, this type of technology allows
cities to track recycling, and identify
what can be recycled in the area. Some
cities in Sydney take this a step further
and use AI powered robots to sort rub-
bish, as well as clean areas such as lakes
and rivers.

5) Public transportation

Public transport has been innovated
with the use of AI to be used within
smart cities. This technology allows pub-
lic transport users to receive and access
live up dates and tracking, which im-
proves timing and customer satisfac-
tion. Automated busses are also
planned to be used within cities, these
can reduce emissions, improve routes,
and increase the frequency.

6) Parking Systems

Using license plate recognition technol-
ogy, car parks are able to detect cars
that have outstayed hours, this can also
enforce payments and tickets. When AI
systems are integrated throughout car
parking areas, space availability is able
to be presented to awaiting users. Some
more advanced technology has the abil-
ity to recommend spaces depending on
the car.

7) Controlling Pollution

Scientists have developed technology
which uses AI and machine learning to
analyse the current pollutants and pre-
dict the pollution levels for the next 2
hours. This type of technology allows au-
thorities to make decisions in advance
to reduce their effect on the environ-
ment.

Fjoralba Nasto Smart Cities and how they use technology

6

CS Uncovered #002

Smart Cities and how they use technology

8) Predicting future needs

Smart cities that are innovating with AI
technology are able to better predict fu-
ture needs of the people. Using energy
tracking technology allows cities to
know when new energy sources are
needed or when more sustainable
methods can be implemented. Some AI
technology can also predict and help
plan on property developments, this
means houses are put onto the market
during periods they are needed.

8) Maintenance

A company called RoadBotics has devel-
oped a technology using artificial intelli-
gence that has the ability to analyse
road imagery to then assess issues and
produce cost effective solutions. This al-
lows cities to know when and where re-
pairs need to take place, and deal with
them while saving money. This type of
technology also improves safety within
cities as problems will not go unnoticed.

9) Security

Security camera footage is typically re-
viewed when a crime has been reported,
this doesn't prevent or stop crime. Secu-
rity cameras that use artificial intelli-
gence have the ability to analyse foot-
age in real time and detect criminal be-
haviour which can then be instantly re-
ported and dealt with. These cameras
can also detect people from their
clothes, allowing the technology to find
suspects quicker than ever.

Challenges of a Smart City
As smart cities offer plenty of benefits in
a rage of different sectors, there is also a
big challenge when it comes to security
of all the technology being used.

There is a need to ensure smart cities
are protected from cyber-attacks, hack-
ing and data theft while also making
sure that the data is reported is accu-

rately, so it can be to the benefit of all
citizenships and not against them.

In order to manage the security of smart
cities there is a need to implement
measures such as physical data vaults,
resilient authentication management
and ID solutions. Some core security ob-
jectives involve:

Availability - Data needs to be available
in real time with reliable access in order
to make sure it performs its function in
monitoring the various parts of the
smart city infrastructure.

Integrity – The data must not only be
readily available, but it must also be ac-
curate. This also means safeguarding
against manipulation from outside.

Confidentiality – Sensitive data needs to
be kept confidential and safe from un-
authorised access. This may mean the
use of firewalls or the anonymising of
data.

Accountability – System users need to
be accountable for their actions and in-
teraction with sensitive data systems.
Users logs should record who is access-
ing the information to ensure accounta-
bility should there be any problems.

Conclusion
To control all the potential challenges
that the technology might bring into
our lives, the government, the private
sector, software developers, device man-
ufacturers, energy providers and net-
work service managers need to work to-
gether to deliver integrated solutions to
guarantee full and reliable security for
its citizens.

However, I think we can all agree that
the benefits of creating smart connect-
ed systems of our urban areas and en-
suring sustainability outweigh any po-
tential risks, making technological de-
velopments and their impact on our dai-
ly lives expand greater than ever.

Fjoralba Nasto

7

CS Uncovered #002

Fjoralba Nasto Smart Cities and how they use technology

A Glimpse of the next
CS Uncovered Issue

On the next issue published, we will look
at a greater depth on how London is
considered a smart city, and what the
government’s objectives are on main-
taining this title.

References:

https://www.twi-global.com/technical-
knowledge/faqs/what-is-a-smart-city

https://aimagazine.com/top10/10-ways-ai
-can-be-used-smart-cities

https://
www.ukconstructionmedia.co.uk/
features/2019-smart-city-infrastructure/

Visiting a Smart City
Visiting a smart city will probably make you acknowledge how quickly the tech-
nology is evolving around us and how its every day use affects our ways of living
within a city.
Below is a list of leading smart cities around the world:

Singapore Tokyo

London Vienna

New York City Toronto

Hong Kong Barcelona

https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city
https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city
https://aimagazine.com/top10/10-ways-ai-can-be-used-smart-cities
https://aimagazine.com/top10/10-ways-ai-can-be-used-smart-cities
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/

8

CS Uncovered #002

COMPILER
CONSTRUCTION

How Alex Burrows and Lukas Trakimas turned an idea to a

fully-fledged programming language

The Art of

9

CS Uncovered #002

I still remember how it happened. We’d
just finished this barely functioning
maths processor in Python, and one of
us off-handedly mentioned “ok, so now
that this done, I think we’re fully quali-
fied to make an entire programming
language now!”. We laughed about it,
“Yeah right, like we’d start such an im-
mense project so close to our exams”
and “There’s no way we’d be able to pull
it off”, only start working on it five
minutes later. This is how our custom-
made “written in 1 month” compiler
works, to convert a high-level language
into x86 assembly. Feel free to follow
along with the code yourself at https://
github.com/lxkast/Glory.

Syntax & Naming
We started at the point anyone would,
to design the language! You can’t build
a compiler without a language to com-
pile. For our language, which we de-
signed rather uninterestingly and within
5 minutes, we settled on syntax very
similar to C, with the most glorious
name possible: Glory.

You don’t truly appreciate how well de-
signed the C syntax is until you make a
language around it, we’d find in later
stages of development that many fea-
tures like semicolons, were the right
choice.

Lexer
With our syntax in hand, it was time to
develop the compiler! All compilers start
by taking the string, the code coming as

text, and breaking it up into little pieces
for further processing. This is known as
lexical analysis; that process of accept-
ing characters and breaking them into
“tokens”. Every number written in the
text, every symbol, every keyword like
“int” or “blank” are picked out by the lex-
er and turned to tokens, with any words
that aren’t recognised as keywords
turned into identifier tokens. For exam-
ple, the code:

Gets tokenised into:

We run this lexing process because the
parser (the stage after to understand
what the code means) gets extremely
complex and there’s quite a bit of deci-
sion-making involved in picking out
these tokens that we don’t want to pack
in there. Whitespace, detecting multi-
character tokens (like keywords with
“int”), understanding numbers, com-
ments, we want all that difficulty gone
for the parser and for it to always have
simple pieces.

The lexer is quite straight-forward im-
plementation-wise and almost definitely
the least interesting part of the compil-
er. It’s just a big for loop and switch, with
a few fancy helpers like “PeekAhead”.
Below, it handles the character “i”.

Alex Burrows & Lukas Trakimas The Art of Compiler Construction

A code snippet for lexical
analysis of raw text when ‘i’
is encontered

https://github.com/lxkast/Glory
https://github.com/lxkast/Glory

10

CS Uncovered #002

The Art of Compiler Construction Alex Burrows & Lukas Trakimas

Parser
Once the code is broken into tokens, it’s
time to understand what it means and
form syntax trees in memory to perfect-
ly describe each line in a structured way
that makes sense. This is known as pars-
ing, and it’s quite a beast!

The key component to making a good
parser is to create a grammar out of it.
This is a definitive guide of exactly how
the syntax of your language is struc-
tured. This grammar needs to be very
precise, ensuring it flows in such a way
that factors in order of operations and all
kinds of things, but when you do form it,
that’s most of the parsing work already
done. (Image of grammar for Glory is at
the bottom).

It looks quite complex, but if you really
look through piece-by-piece, what it’s
describing is quite simple. Each line in
this grammar is a rule, a separate piece,
and when understanding the code, the
parser starts at the top-most rule and
slowly, with a chain of if statements,
makes its way down through them.

With the grammar written, we can now
use a technique called recursive de-
scent to quite literally just turn this

grammar into code. The idea is quite
simple. For every line (rule), we make a
new function, and we simply implement
each rule sequentially through that. For
instance, here’s the “while” block:

To implement the “while” rule above in-
to code, we create a “ParseWhile” func-
tion, which will:

1. Move past the “while” token (if this
function has been called the
“ParseStatement” has already
checked and established it is a
while statement, so we can skip it.)

2. Call “ParseExpression” to read
through the condition tokens.
“ParseExpression” will read as
much as it can until it encounters a
token that neither it or its sub-rules
can handle, which will be the “{“
given valid code.

3. Verify there is actually a “{“ here,
and skip past.

4. Call ParseStatements to continually
read statements. Once again, this
will return as soon as it’s lost on
what to do, should be the “}” token.

5. Verify there’s a “}” and read it. Our
while is done.

The complete grammar defining Glory’s syntax

11

CS Uncovered #002

If you visit the project and navigate
around, you’ll find the “Parser.cs” class
with the “ParseWhile” function precisely
doing this in the code. Now just imagine
that repeated for every single rule,
alongside a bunch of type checking and
more – and that’s the parser! The most
impressive function in the parser is
probably the function definition han-
dling one, which as you can see from
the rule is a very complex function in-
deed!

We realized that having semicolons in
our C-derived language can be quite
helpful with error handling. Our parser
does not “need” semicolons to under-
stand valid code, all the functions will
naturally back out as you hit the end of
the line and they no longer know what
to do with the next token. However, if
code is written incompletely and a
statement makes no sense at all, with-
out some form of clean line separating
characters like semicolons, the parser
has a very difficult job trying to realign
itself with what’s going on to continue
reading to try and find “all errors” in-
stead of just one, and semicolons help
them out a lot with it. In the end this
didn’t impact our parser as it has simple
error handling due to time constraints,
but we realized this is a very valid use of
semicolons in the code. (Doesn’t help
C++’s errors though…)

Code Generation
The final stage of the compilation pro-
cess is to take the statements (tree per
line) from the parser and generate as-
sembly code out of it. At the moment,
our code generator literally creates text
assembly code that must be given to an
external assembler, though its architec-
ture is intentionally designed so it’s easy
to swap it to output machine code di-
rectly someday.

The Calling Convention
Before we could dive into generating as-
sembly, we had to first set a few stand-
ards for exactly how the final assembly
needs to look. One such standard was
the calling conventions. A calling con-
vention describes how memory needs
to move around when you call a func-
tion. This includes a description of what
has to happen in registers and what has
to happen to the stack (a piece of
memory every thread in a process has
for keeping track of local function data).

Consider this function:

The first step to calling this function is
the “add(…);” line, off in another function.
There’s quite a lot of complexity to pull-
ing this call off properly, and a lot of ad-
ditional considerations not described
here, such as backing up in-use regis-
ters. But at its simplest, this is what the
stack memory should look like as soon
as we enter the body of a function. The
stack grows downwards, so the top is
the stuff pushed first:

Alex Burrows & Lukas Trakimas The Art of Compiler Construction

12

CS Uncovered #002

Alex Burrows & Lukas Trakimas

Arguments are pushed onto the stack in
reverse order with a return address de-
scribing where the CPU should jump to
when returning from the function. In
practice, these stack operations are
done with two “push” instructions for
the arguments and one x86 “call” in-
struction which handles both the return
address and function jump automatical-
ly.

After this initial setup from the calling-
side, we jump into the function and it’s
down to the function itself to take con-
trol of the stack as necessary, and we do
this by kicking the function off with
what’s known as a prologue. The job of
the prologue is to set up the function’s
“stack frame”, which is the region of the
stack the current function is using for its
local variables. To do this, the machine
has a second register entitled
“ebp” (base pointer) designed to track
the beginning of the current stack
frame, to allow a sort of “start pointer”
and “end pointer” format to be in place.
Here’s what the prologue looks like in
assembly:

The prologue starts by backing the base
pointer up so we can return the stack
frame back to how it used to be when
we return, then configures ebp and esp
such that they’re showing room in place
to store every local variable the function
has in all branches.

Here’s how memory looks after the pro-
logue finishes:

Now we have a clear frame for our local
variables, with the parameters and extra
info at a predictable amount behind the
unmoving ebp register, and the local
variables at a predictable amount
ahead. From here, we can execute the
function’s actual code, which can use
offsets around ebp to access relevant
things at it pleases.

After the function’s body completes, we
have to restore all the stack pointers
back to how they were before. Any path
that returns from the function, whether
it’s from the middle or the end will jump
to this epilogue logic at the end, and it’s
given below:

Once the function returns, the stack
looks like this – note that we don’t both-
er to erase unused bits of the stack, so
all the function’s stuff will happen to be
sitting around ahead of the stack point-
er until it gets overriden.

The Art of Compiler Construction

13

CS Uncovered #002

The calling convention also describes
how data must be returned from the
function, which is to use the eax register
for any < 8 byte value or, in the case of
arrays, for the caller to make some space
on the stack above the parameters that
the function can copy its return value
into for the caller.

Generating operations
The assembly we generate to perform
the actual operations in the code fre-
quently needs to use registers to tempo-
rarily hold onto data. For instance, to
perform an addition, the CPU requires
that the two values to be added must be
moved to registers first. When you’re in
the middle of a line with many nested
operations going on, you’ll often need 2,
3, 4 or maybe even 5 registers all “in use”
at once. We need a reliable system that
allows operations to be assigned regis-
ters at request, and this is precisely what
we do. We have 5 registers free for use,
which we dub the “scratch registers”.
These registers have no fixed purpose
and a table of which are in-use at any
time during generation is kept. Then the
code for generating all the operations
simply asks “Can I have a register for
<this length of time>”, and it’ll be as-
signed.

A significant bulk of the work in the
code generator comes from the Com-
pileNode() function, which has the re-
sponsibility of generating assembly to
represent a node on a tree. This function
takes the node to compile, and where
the result of said operation may go –
which could be a register, or place on
the stack, whatever the node above the
current one said it wants this to go into.

Let’s run through the steps for the fol-
lowing function:

As soon as the prologue finishes genera-
tion, the compiler sees the return state-
ment here, and this in turn calls Com-
pileNode with the tree involved (a + b),
and eax as the destination.

From here, CompileNode will switch on
what type of node it’s been given, a plus
node in this case, and do the following
for the addition:

1. Compile the left-hand of the addi-
tion (accessing a) through a recur-
sive call, outputting the value of
that into our destination.

2. Allocate a scratch register tempo-
rarily, in this case EDI, and while it’s
in use:

3. Compile the right-hand node, out-
putting into the temporary register.

4. Use the add instruction with the
destination and right-hand node
involved (the x86 instruction out-
puts directly into the left-hand side,
the destination).

A significant amount of the code gener-
ation is just about following a pattern of
instructions for each operation, albeit
usually with different registers depend-
ing on what the context around the op-
eration was, and a few decisions to vary
depending on where the destination is.

Register EDI ESI ECX EBX EDX

Available? Yes Yes Yes Yes Yes

Alex Burrows & Lukas Trakimas The Art of Compiler Construction

14

CS Uncovered #002

Alex Burrows & Lukas Trakimas

Arrays
Arrays were quite the fun thing to im-
plement into Glory because they came
with multiple challenges. The struggle
started with returning arrays, we had to
revise our calling convention mid devel-
opment to, quite literally, make room for
them, as they can’t just fit in eax and
need to go across the stack. Here’s a dia-
gram of how the calling convention de-
scribes the stack when there’s an array
return type:

But returning arrays was only the begin-
ning. The idea of having the
“destination” passed into
“CompileNode” pulls extremely satisfy-
ing results, it allows every node to be
written completely independently with-
out needing to pack in logic of what’s
happening above it in the tree. Com-
pileNode is quite simply told by the
node above “please put the result here”
and it does it, every node can be written
really modularly like this… Until array in-
dexing came in.

Unfortunately, indexing wasn’t kind to
our destination system at all because
unlike everything else it doesn’t simply

take the result of what it’s indexing, it
actually needs to reach at the thing it’s
indexing.

Consider the code “a[1]”. If this wasn’t an
indexing node, the generator would just
say “Please compile this ‘a’ node I see
here, whatever’s necessary to do that, to
output into <this place>” and then “And
now I’ll process that”, but if we’re index-
ing an array, you don’t expect it to be
moving “a” around anywhere! You ex-
pect it to actually access a memory off-
set ahead of a. We could have this be
really, really dumb, and indeed allocate
an entire temporary space for “a” to
move into just to index that, so it makes
a brand-new copy of “a” every single
time you index it but that’s really horri-
ble, even for Glory’s optimisation stand-
ards.

There are some potential architectural
solutions to this, we could tweak the
destination system and try to make it
even smarter while still keeping as
much modularity, or we can let the in-
dex node create the pointless copy and
have an optimisation layer after the
code generator (discussed later) detect
in “hindsight” that there’s a redundant
copy and remove it. I can’t confirm but I
suspect this is precisely what the larger
compilers do, they likely come up with
very stupid things like this initially, but
further steps pick up on them because
unlike Glory they don’t bake their “first
draft” straight to assembly. But, because
of time restrictions, we went down nei-
ther path, and we decided to simply
hard-code support for different bases
into the indexing node. Thankfully,
there’s only two things you can actually
index in Glory, and that’s variables and
function calls. (Or, so we thought…) So,
we simply hard-coded a check into the
“index node” to look at what node it’s in-
dexing and do the relevant thing for

The Art of Compiler Construction

15

CS Uncovered #002

each. Variables were easy enough,
though indexing function call results
was simply disgusting because it effec-
tively requires the entire call generating
system, which averaged 50 lines of code,
to be split in two so for an index variant
some extra instructions can be put right
in the middle of all the call stuff.

Unfortunately, we soon realized, that
there’s a third thing you can index, and
that’s… An index node. If you have multi-
dimensional arrays in your code, which
Glory supports, you can very validly do “a
[x][y]”, which is an index node within an
index node. You can also return multi-
dimensional arrays, index the returns of
said multi-dimensional arrays, and
countless more fun things! Technically
there really isn’t anything special about
multi-dimensional arrays, they are quite
simply arrays that contain arrays, but it
was added suffering to make sure we
also fully supported all combinations of
operations with them in place.

Code Optimisation
The code the compiler generates is ex-
tremely inefficient in places. The below
code generates this assembly:

If you watch the compiler output closely
there is very broad range of stupid
things happening. Subtracting 0 from a
register? Code after a jump instruction?
If you were to ask a human to write the
isNegative() function in assembly they
might give you this instead.

Far smaller and faster than the junk out
of the compiler. The compiler outputs
such terrible code because it has little
optimisation in it, due to time con-
straints.

Alex Burrows & Lukas Trakimas The Art of Compiler Construction

16

CS Uncovered #002

Alex Burrows & Lukas Trakimas

If we were to implement aggressive op-
timisation, there’s two places we can do
it. One is to add optimisation, extra intel-
ligence, into the code generator as it
currently is. This can certainly go some
way and there are indeed some rather
“high-level” optimisations we could add
to the generator about how to struc-
ture/order the ASM (short for assembly)
to better flow as a whole. However,
simply adding tricks to the code genera-
tor alone won’t be enough to give us re-
ally clean assembly. In fact, it’s near im-
possible to do all the optimisations you
see above directly in the code generator.
This is because not only can the code
generator not foresee what operations
are going to happen later (which is very
important) but the modularity of the
code generator also means making op-
timisation decisions about how exactly
multiple nodes are interacting with
each other would simply be a mess. But
this is very easily fixed.

How it could be made more opti-
misable
In A-level it’s heavily implied that optimi-
sation happens “after the code is gener-
ated”. This statement is partially true,
because optimisation is a thing that can,
and does, happen at literally every stage
of compilation, it’s not just after. Many
compilers have optimisations happen
during the initial code generation, like I
just described. However, it is correct that
most compilers will do a large bulk of
their optimisation after some kind of ini-
tial “code generation phase”, the one
that we currently end on. To do this,
they have the same code generator that
we currently have, but tweak it to, in-
stead of outputting ASM directly, gener-
ate a tree. Unlike the parser’s rather ab-
stract tree, this tree describes in assem-
bly-level detail every little step the ma-
chine may need to take to run the pro-
gram. By doing this, we’ve now thrown
away all the “high-level” niceties of
statements and nodes, all the code gen-

erator leaves us with this massive dump,
this singular massive flow of operations.
Every time need to move in memory,
every time we need a temporary value
for something, every little offset access
or addition/subtraction, it’s all broken up
in this tree. And what’s really nice about
this now, is this is much more optimiza-
ble. There’s no longer statement and
node boundaries in the way, it’s all just
one big thing, and now we can look
ahead to cross-reference, because
there’s a solid first draft there. From this
point it really is just a matter of trying to
brute simplify, through supports for all
kinds of tricks, what’s in the tree as
much as possible. And once the optimis-
er is happy with the result, final registers
can be assigned, and ASM can be writ-
ten.

If we took the compiler down this path
and changed the code generator to out-
put a tree instead of ASM, we’d likely call
it the “lowering phase” instead.
“Lowering” is a common term in compil-
er design that means to take the high-
level stuff and nodes and breaks it into
low-level steps, precisely what the gen-
erator would be doing.

As of current, the only notable optimisa-
tion our compiler performs is dead code
elimination within functions. If given the
following code:

The Art of Compiler Construction

17

CS Uncovered #002

The parser, as that’s the component
that has to perform “flow checking” to
make sure the input code always re-
turns, will remove the redundant “n +=
4” and “n = 0” lines which is indeed a
form of optimisation, performed at a
very high-level.

Final words

Our language suffers the most from a
lack of features – strings, floats, lists and
“for” were all initially planned, but cut to
shorten development. While the code
generator works fine there is one un-
tested scenario in which it may fail:
When it runs out of scratch registers. At
the moment, it quite literally explodes
here (through an error message), but it
is possible to implement unused regis-
ter backups onto the stack, just like how
operating system may use virtual
memory to swap pages back and forth,
we can use the stack to hold some regis-
ters to make some room. However,
there are a considerable number of lay-
ers to doing this, you have to really care-
ful you don’t mis-match the pushes of
and pops of that with pushes and pops
the operations are laying down and it’s
the kind of thing that’d be significantly
easier to do if had more post-lowering
stages. Thankfully, in all of our testing
and development we’ve yet to find a
case where the 5 scratch registers aren’t
enough.

Writing a compiler is a challenging but
rewarding task, requiring a deep under-
standing of low-level computer architec-
ture and hardware. The moral of the sto-
ry here is: If you just want to make a pro-
gramming language – make it an inter-
preted language, it’s 1000 times easier.

Alex Burrows & Lukas Trakimas The Art of Compiler Construction

18

CS Uncovered #002

Predicting Stock prices with Long Short-Term Memory Thanish Senthil

Did you know you can leverage the use
of computers to make predictions of the
future? As astonishing as it sounds, it is
possible with the use of Machine Learn-
ing algorithms, which make predictions
by finding on patterns across huge
amounts of data, but it doesn’t mean it
is always accurate. In this article we will
be exploring a Machine Learning model
called Long Short-Term Memory (LSTM)
and its applications for predicting the
future prices of a stock.

What are Long Short-Term
Memory and Recurrent Neural
Networks?

Long Short-Term Memory is a type of
Recurrent Neural Network (RNN). An
RNN is designed to process sequential
data - data that has a chronological rela-
tionship - such that points in the dataset
are dependent on other points in the
dataset. Examples of Sequential Data

include Time Series, where data is col-
lected at regular time intervals (Stock
Price data is what we will be using for
the Time Series data), Natural Language
Text and much more. An RNN remem-
bers previous time steps and uses that
to make predictions.

Imagine you are trying to predict the
next word in a sentence, if you look at
the previous words, you will have a bet-
ter idea of what the next word is likely to
be. This is simply how RNNs work, they
use an internal memory to process se-
quences and use those to make a pre-
diction. These features are not present
for a classic neural network such as a
feedforward neural network.

Why is LSTM used instead though?

As previously stated, LSTMs are a type of
RNN, but the internal memory used in a
LSTM network allows them to store long
-term dependencies in the data. The
memory cells consist of gates which are
the input gate, forget gate and output
gate and they regulate the flow of data,
and they are used to determine whether
data should be retained or forgotten.
This is why Long Short-Term Memory
networks are used instead of Recurrent
Neural Networks for Stock Price Predic-
tion.

PREDICTING STOCK PRICES
with Long Short-Term Memory
Thanish Senthil

19

CS Uncovered #002

What is a neural network?
Since we’ve established that Long Short-
Term Memory networks are a type of
Recurrent Neural Networks but what is
a Neural Network? Neural Networks
work similarly like the neurons in your
brain. Neural Networks consist of multi-
ple layers of interconnected nodes
which we refer to as neurons which pro-
cess and transform data. The layers in-
clude an input layer, hidden layers and
an output layer. Neural networks are
weighted, directed graphs so each node
is connected to another node and has a
weight. When an input is passed into an
input layer, the data is redirected into
the hidden layers. As the input is propa-
gated through the network, each layer
then performs mathematical operations
on the input such as multiplying the in-
put by the weight and adding a bias
term. Adding a bias term allows the net-
work to adjust its output based on a
constant value regardless of the input
data.

Now that all the theoretical stuff is out
the way, lets implement LSTM to predict
Stock prices for the next day in Python!
We will be predicting J.P. Morgan stock
prices.

1. Firstly, we need to gather stock
price data of JPM, using these li-
braries in Python. We simply down-
load the Stock price data from Jan
1st 2013 to 22nd March 2023 and save
all the data into a CSV file.

2. Now we need to import the neces-
sary libraries which we will be using
for this project. Pandas will be used
for reading off the csv file, NumPy
for creating NumPy arrays, mat-
plotlib for plotting data, scikit-learn
and Keras for creating and training
the machine learning model.

3. This step we add the Stock Price
data onto a data frame and plot the
closing prices using matplotlib.

Thanish Senthil Predicting Stock prices with Long Short-Term Memory

20

CS Uncovered #002

Predicting Stock prices with Long Short-Term Memory Thanish Senthil

4) Now we need to determine what
length of the NumPy array we will
be using for training the machine
learning algorithm. In this code, we
create a new data frame and create
a NumPy array based on just Clos-
ing prices and take 95% of the
length and round it to the nearest
integer.

5) The next crucial step is to normalise
the data using Min-Max scale. The
purpose of normalisation is so that
data has a fixed range of values, in
this case, 0 and 1. When data is on
similar scales, it removes bias as an
algorithm may give more weight to
one input. Normalisation will re-
duce numerical problems during
training.

6) We now specify what the training
data will be then we create two
empty lists which is used to store
input and output sequences for the
LSTM. We create a sliding window
of 60 time steps for each input se-
quence. The loop appends the pre-
vious 60 rows to ‘x_train’ and the
next row to ‘y_train’ starting from
the 61st row.

7) This step involves building the
LSTM model and training it using
Keras. We create two LSTM layers,
which are layers consisting of neu-
rons that receive input from all of
the neurons in the previous layer.
After, we optimise our model with
the Adam optimiser and minimise
mean-squared error. It is then
trained on the training data we pro-
vided.

8) Now we prepare the testing data
set. We slice the testing data set in-
to an input and output data and
make predictions on the input data
using a trained model. The predict-

21

CS Uncovered #002

ed values we obtained are trans-
formed into the original scale. A
Root Mean Squared Error is also
calculated. An RMSE is simply the
standard deviation from the actual
values and the predictions. We had
actually obtained a RMSE of 4.77
which is relatively small as the stock
price is around 100-150 dollars

9) The very last step involves plotting
the data and visualising it to see if
our predictions were accurate. This
code splits the chart showing
which data was used for training,
which was used for predictions and
the actual value.

Conclusion
It is evident that the program computes
a prediction that has a small standard
deviation (RMSE of 4.77 from the actual
values). This model isn’t entirely great for
predicting the exact prices, but it pro-
duces predictions which follow a trend
that is extremely similar to the actual
values. It is worth noting that predicting
stock prices is notoriously difficult. Stock
price movements are stochastic pro-
cesses which follow Brownian motion.
This machine learning model does not
take into account any external factors
such as news, volatility, interest rates,
etc., only historical price data. However,
it is interesting how machine learning
can be applied in the stock market and
helps analyse large amounts of data
which can be difficult for human ana-
lysts.

Thanish Senthil Predicting Stock prices with Long Short-Term Memory

22

CS Uncovered #002

Competitive Programming Vol. 2 Vladimir Filip

In the previous edition we covered the
basics of asymptotic analysis, a way to
represent the running time and
memory usage of an algorithm as a
function of its input size. In this article
we will cover the design of various data
structures and the time complexity of
operations applied to them.

What are data structures?

A data structure stores and organises
data; it is a way of arranging data so that
it can be accessed and updated effi-
ciently.

There are various ways to classify data
structures, but all of them can be split
into two groups: linear data structures
and non-linear data structures. In this
edition we shall cover linear data struc-
tures, their design and the benefits and
drawbacks of using them. In-depth
knowledge on this allows you to write
faster and more memory-efficient solu-
tions and can even change the way you
approach a given problem.

Linear Data Structures
These are data structures that are de-
signed to store its elements in a se-
quence, with one data element coming
after another. There are four linear data
structures: arrays, linked lists, stacks,
queues and hash tables.

The Static Array
Insertion: O(n), Read: O(1), Deletion: O(n),
Creation: O(n)

The static array is the simplest of all data
structures, storing a fixed number of ele-
ments in memory and allowing them to
be accessed by index. The elements are
stored in sequence in memory, and so
given the memory location of the start
of the array and the index, the memory
location of any element in the array can
be obtained and the element can be
read. This makes any read operation on
the elements O(1), as the time to read
the element does not change with the
size of the array. Therefore, you could
say that the memory space storing the
elements is contiguous.

Competitive Programming Vol. 2
Intro to Data Structures
Vladimir Filip

A diagram of how a static
array is stored in memory,

with all the elements stored
in sequence and in one con-

tiguous block.

23

CS Uncovered #002

Vladimir Filip Competitive Programming Vol. 2

This contiguous memory space first has
to be allocated (marked by the operat-
ing system so that data stored cannot
be overwritten), making the time com-
plexity of creating a static array O(n),
with n being the size of the array, as the
amount of memory allocated is directly
proportional to the array size.

If an element at index i is deleted, or an
element is inserted at index i, from an
array of size n then the n – i elements to
the right of that element have to be
shifted left in the case of deletion or
right in the case of insertion in order to
preserve the order of elements without
leaving gaps in the array. This makes the
time complexity of insertion and dele-
tion O(n – i), and since i can be anywhere
between 0 and n – 1, this simplifies to O
(n).

Arrays are commonly used due to their
fast access times, but due to insertion
and deletion happening in linear time,
other data structures may be needed if
those are the main operations you wish
to carry out.

Dynamic arrays are also used in lan-
guages such as Python and JavaScript,
where the size of the array can be in-
creased and decreased as needed. Inser-
tion and deletion operations are even
slower on dynamic arrays (also known as
‘lists’), for if there are more elements
needed to be stored than the number of
elements the allocated memory space
can hold, a larger block of memory has
to be re-allocated, and all the elements
have to be copied to the new memory
space.

The Linked List
Push: O(1), Pop: O(1), Creation: O(1), Read:
O(n), Insertion: O(n), Deletion: O(n)

A linked list is similar to an array, in
which it is used to store multiple ele-
ments in one structure, but it does away
with contiguous memory location, in-

stead consisting of a number of smaller
elements stored in random locations in
memory, each containing the data value
and a pointer (variable storing a
memory address) to the next element.
The elements are ‘linked’ through these
pointers, hence the term ‘linked list.’ The
linked list can also store ‘head’ and ‘tail’
pointers to store the location of the first
and last elements in the linked list to al-
low for the insertion and deletion of ele-
ments on either side.

Figure 2: A diagram of how a linked list is structured,
some linked lists may contain two pointers in each
element, one to the previous element and one to the
next element. This is a doubly linked list.

To remove or add elements to the linked
list all that is needed is to change the
pointers (variables storing memory ad-
dresses) on elements either side of the
new element, instead of having to shift
n elements as is the case with an array,
making insertion and deletion time
complexity in linked lists O(1) relative to
the linked list’s size. However, this is the
case of push and pop operations where
elements are being added or removed
either side of the list. Inserting or delet-
ing elements in the middle of the list re-
quire traversing an average of n ele-
ments through the linked list through
their pointers until the desired location
is reached, making the insertion and de-
letion of elements at index i O(n), with n
being the size of the linked list. The only
allocation required is to allocate enough
memory for the new element being in-
serted and the pointer, which is not af-
fected by the size of the linked list.

24

CS Uncovered #002

Competitive Programming Vol. 2 Vladimir Filip

A linked list is generally initialised as
empty and elements are pushed after-
wards, making creation of a linked list a
constant-space operation.

Reading an element in the middle of a
linked list also requires traversing the
linked list from the start of the list to the
required element through its pointers.
The number of elements required to
traverse through grows linearly with the
size of the linked list, making the read
time complexity O(n), with n being the
size of the linked list.

Therefore, a linked list is mainly used if
the main operations used are insertions
and deletions, and it lays the foundation
of other data structures such as stacks
and queues.

The Stack
Push & pop: O(1), Creation: O(1), Peek: O
(1), Read/insert/delete at index i (0 < i <
n): O(n)

A stack is a linked list where all inser-
tions and retrievals are carried out at the
end of the linked list, often referred to as
the ‘top’ of the stack. The stack therefore

follows a Last In First Out design, where
the last element ‘pushed’ to the top of
the stack is the first element retrieved,
or ‘popped’ from the stack.

Use cases include any scenario where
you need to constantly add elements
and retrieve the most recently added
element, with a stack allowing you to do
that in O(1) time.

The Queue
Push & pop: O(1), Creation: O(1), Peek: O
(1), Read/insert/delete at index i (0 < i <
n): O(n)

A queue is also a linked list, where push-
ing (also known as enqueuing) an ele-
ment and popping (also known as
dequeuing) an element happens at op-
posite ends of the linked list. The queue
therefore follows a First In First Out
(FIFO) design, where elements are
popped in the exact order in which they
are pushed.

This makes them great for breadth-first
traversal of trees, or traversal of permu-
tations where you want permutations of
the same recursive depth to be consid-
ered consecutively. They can also be
used for data buffers due to O(1) push
and pop time complexities.

Figure 3: A diagram of a stack. There is often a mis-
conception that stacks are implemented using ar-
rays rather than linked lists, but this is not the case,
for if an array was used it would not be possible for
push/pop operations to occur in O(1) time and for the
size of the stack to be dynamic.

Figure 4: A diagram of a queue, consisting of front
and back pointers which are used for enqueuing
(adding an element to the queue) and dequeuing
(popping an element from the queue) respectively.

25

CS Uncovered #002

Vladimir Filip Competitive Programming Vol. 2

The Hash Table
Creation: O(1), Read/Write: O(1)

Also known as a dictionary in Python,
the hash table is a data structure that
stores data in the form of key-value
pairs, allowing values stored in the struc-
ture to be identified using the given key.

Internally, hash tables consist of a static
array, with each element being referred
to as a bucket.

Modern hashing functions are made so
that they produce unique numbers for
as many different keys as possible, as-
signing each key-value pair a unique
bucket. However, collisions can still oc-
cur, where different keys are hashed to
produce the same number. The bucket
then becomes a linked list and both the
values in both key-value pairs are stored
in there.

If the internal array is very small, and/or
if there are a very large number of ele-
ments, elements could end up being in
stored in very long linked lists, making
the read-write time complexity O(n) ra-
ther than O(1).

Therefore, while hash tables are very
useful as caches (due to quicker access
times), they must not be over-used, for if

they become large enough to lead to ,
any performance benefits are lost.

Summary
In this article we have covered four line-
ar data structures, their design and po-
tential use cases. However, the exact
way in which you can use them in code
varies from language to language, and
so I highly encourage you to look up
how to use these structures in your cho-
sen language and practise using them.

In the next issue, we will cover the de-
sign and characteristics of non-linear
data structures, such as graphs, trees
and heaps, as well as popular algorithms
that use linear and non-linear data
structures to their full potential for high-
ly efficient solutions to more abstract
problems.

Figure 5: A diagram of a hash table. ‘Buckets’ are of-
ten used to refer to the data structure in which values
are stored,.

26

CS Uncovered #002

Competitive Programming Vol. 2 Vladimir Filip

With over 600 different active distribu-
tions, 32.8 million users (not including
the 1.6 billion users of Android), and over
1 500 collaborators working on the Linux
kernel, it is believed that it would take
thousands of years to rebuild the Linux
kernel from scratch. The operating sys-
tem of choice for the hardcore develop-
er, Linux has cemented its place in the
OS landscape as one of the most reliable
and refined systems to ever exist, pow-
ering everything from the tiny Raspber-
ry Pi to the mighty TOP500 supercom-
puters. But what are the origins of Linux,
and how did it grow into such a vast
ecosystem?

In the 1980s, the dominant operating
systems were MS-DOS, Unix and other
Unix-like systems. The first version of
Unix was released in 1969 and already
had a strong developer following. In
1974, it was rewritten entirely in C and
became the first portable operating sys-
tem, and in the late 1970s, a number of
commercial variants of Unix had been
produced by the likes of Microsoft, Sun
Microsystems and IBM. However, the
main issue with all of these operating
systems was that they were proprietary;
their source code was kept completely
hidden from other developers.

In the formative years of operating sys-
tems, this led to several issues. A partic-
ular incident, recounted by one Richard
Stallman, was when an especially an-
noying printer could not be fixed be-

cause the users had no access to the
source code of its drivers. The lack of
flexibility introduced by proprietary soft-
ware in peripherals and system software
also prevented collaboration between
developers and reduced the control that
a user had over their own system.

The rise of proprietary software led Stall-
man to launch the GNU (Gnu's Not Unix)
project in September 1983, with the aim
to produce a completely free operating
system, which would allow users to
study the source code, share the soft-
ware, modify its behaviour, and publish
their own version of the software. In this
way, the freeware (later including the
term 'open source') movement had be-
gun. The GNU GPL (General Public Li-
cense) was released soon after and by
the 1990s, many elements of what
would be the GNU operating system
had been created and were all free and
open source. However, the project was
incomplete; it lacked several low-level
features and still did not have a com-
plete kernel. Something was needed to
fill that last gap, to make Stallman's vi-
sion of an open source operating system
finally become a reality. And that some-
thing was the creation of a certain 21-
year-old student at the University of Hel-
sinki.

Linus Torvalds began work on his own
operating system kernel in August 1991.

A (Brief) History of Linux
Constantin Filip

27

CS Uncovered #002

Constantin Filip A (Brief) History of Linux

Originally called Freax and later Linux, it
was inspired by the Unix-like Minix OS
produced by Andrew Tanenbaum.

Torvalds originally began developing
Linux on a Minix system using Minix com-
ponents, and by September, v0.01 of the
kernel was posted on ftp.funet.fi, the Uni-
versity of Helsinki's FTP server. A defining
feature of Linux which separated it from
Minix was its use of a monolithic kernel
(i.e. the entire operating system works in
the kernel space, a section of the virtual
address space used specifically for run-
ning the kernel and some device drivers,
but most importantly, the kernel space
cannot directly access the userspace and
vice versa), compared to Minix which used
a microkernel. By the end of the year, Tor-
valds already began to receive code for
new features sent to him from other peo-
ple; this marked the start of Linux as a col-
laborative project, one which would grow
to thousands of developers around the
world.

In 1992, Torvalds adopted the GNU GPL
license, after originally publishing Linux
releases under his own license to restrict
commercial activity. This marked a pivotal
moment in making Linux one of the most
prominent examples of free, open-source
software. This meant that anyone could
view the source code and modify their
version of Linux in any way they wanted.
Soon, all Minix components were replaced
by ready-made GNU features, and devel-
opment on Linux began to move away
from Minix and continued on existing

Linux systems. Developers worked on in-
tegrating GNU features to produce a fully-
fledged operating system. In March 1994,
the first production version of Linux was
released (although two years later than
Torvalds had anticipated). By then, the OS
already included several complex features
for the time including multitasking, man-
agement of virtual memory and a multi-
threaded file system.

A major aspect of Linux that led to its pop-
ularity was the ability for developers to
create distributions of Linux. A distribu-
tion, or distro for short, is an operating sys-
tem which includes the Linux kernel, GNU
tools and libraries together with a pack-
age management system.

Linux is typically installed on a machine as
a particular distribution. The rise of the
Linux distros is a result of the GNU philos-
ophy, but also because of the architecture
of Linux itself. The kernel is divided into
various self-contained subsystems, each
of which has a defined function. They indi-
rectly interact with each other using func-
tion calls and shared data structures, with
each subsystem further divided into dis-
tinct modules. This modularised structure
is what made mass collaboration on Linux
possible; it allowed many independent
developers to contribute to its develop-
ment without interfering with the work of
other developers.

The oldest Linux distro still actively main-
tained today, Slackware, was first released
in July 1993.

Over time, many other popular Linux dis-
tributions began to be released. Each dis-
tribution was created for a specific need,
with a particular design focus. In 1994,
Debian was released, noted for its stability
and security and ability to run on a wide
range of devices. Commercially backed
distros maintained by software compa-
nies appeared, most notably Ubuntu
(based on Debian) and Fedora, while oth-
ers remained entirely community driven.
Distros designed for specific machines,
such as servers and embedded devices
also appeared, as well as for specific user
groups such as scientific communities.

Linus Torvalds — the creator of Linux

28

CS Uncovered #002

A (Brief) History of Linux Constantin Filip

Collaborators continued to add more and
more features to Linux, including sym-
metric multiprocessing, improvement of
its graphics stack to use modern GPUs,
wireless drivers and advanced peripheral
support. In 1997, the first version of
GNOME (GNU Network Object Model En-
vironment) was released, a desktop envi-
ronment for Linux and other Unix-based
operating systems, which has become the
default environment of Debian, Fedora
Linux, Ubuntu, SUSE Linux Enterprise and
many other distros. GNOME provided a
simple and intuitive UI design which
made Linux much more accessible to less
experienced developers.

In November 2007, Android, a mobile OS
based on Linux, was released. It contin-
ues to be developed by a group of devel-
opers known as the Open Handset Alli-

ance and sponsored by Google. Since its
original release, it has become the most
popular operating system, with over
three billion active users.

Today, Linux runs on billions of different
devices and the kernel has amassed
over 27.8 million lines of code as of 2020.
It is one of the dominant operating sys-
tems on supercomputers, servers and
embedded systems, and continues to
grow in popularity in the desktop PC
market. In the future, the kernel will
continue to be updated with all the lat-
est drivers and technologies; Linux is ex-
pected to continue to play a major part
in the Internet of Things, the motoring
industry, cloud infrastructure, personal
computing devices, and many other
technological innovations.

Here is a (simplified) dia-
gram of the Debian family
tree. You'll probably need a
magnifying glass to see
some of these distros. The
chart also only goes up to
2011, so 12 years later at the
time of this publication of CS
Uncovered, it's probably
grown quite a bit.

And this is just the distro
family tree for Debian
alone, so it's just a fraction
of the full family tree of the
whole of Linux.

29

CS Uncovered #002 5 CS Uncovered #002

Vladimir Filip Competitive Programming Vol. 2

30

CS Uncovered #002

A (Brief) History of Linux Constantin Filip

4 CS Uncovered #002

31

CS Uncovered #002 5 CS Uncovered #002

Vladimir Filip Competitive Programming Vol. 2

32

CS Uncovered #002

