
1  

 

CS Uncovered #002 



2  

 

CS Uncovered #002 

Fjoralba Nasto 



3  

 

CS Uncovered #002 

Contents 

Contents 

The Art of 
COMPILER CONSTRUCTION 

Page 8 

Page 4 

SMART CITIES 
and how they use technology 

Page 18 
PREDICTING STOCK PRICES 
with Long Short-Term Memory 

Page 22 
Competitive Programming Vol. 2 — 
Intro to Data Structures 

Page 26 

A (Brief) History of Linux 

THE PUZZLE PAGES 
Page 29 



4  

 

CS Uncovered #002 

Predicting Stock prices with Long Short-Term Memory 

‘Smart city’ is a term used for a city 
which uses information and communi-
cation technology (ICT) to improve op-
erational efficiency, share information 
with the public and provide a better 
quality of government service and citi-
zen welfare. This is done by effectively 
utilising a variety of software, user inter-
faces and communication networks 
such as the Internet of Things (IoT), to 
expand their reach and connectivity.  

How Smart Cities Work 
Smart cities follow four steps to improve 
the quality of life and enable economic 
growth through a network of connected 
IoT devices and other technologies. 
These steps are as follows: 

1. Collection: smart sensors gather re-
al-time data 

2. Analysis: The data is analysed to 
gain insights into the operation of 
city services and operations 

3. Communication: The results of the 
data analysis are communicated to 
decision makers 

4. Action: Action is taken to improve 
operations, manage assets and im-

prove the quality of city life for the 
residents 

The Internet Of Things and 
Smart Cities 
It wasn’t long ago when the only way to 
access the internet was through a desk-
top computer, but now pretty much an-
ything can connect to the internet – in-
cluding from your mobile phone, car, 
fridge and on-street sensors. This is the 
Internet of things (IoT). 

The internet of Things is a network of 
connected devices that communicate 
and exchange data. This data collected 
from these devices is stored in the cloud 
or on servers to allow for improvements 
to be made to both public and private 
sector in the city.  

However, despite the fact that IoT is one 
of the key factors of a smart city, other 
technologies might include: 

− Application Programming Interfac-
es (APIs) 

− Artificial Intelligence (AI) 
− Cloud Computing Services 
− Dashboards 
− Machine Learning 
− Machine-to-Machine Communica-

tions 
− Mesh Networks 
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How Artificial Intelligence is 
used in Smart Cities 
Artificial intelligence is defined as the 
intelligence of a computer to imitate hu-
man capabilities and the way that the 
human brain works in applications of 
any kind. These include expert systems, 
natural language processing, speech 
recognition and machine vision.  

According to an article released by AI 
Magazine, there are 10 ways that AI can 
be used in smart cities: 

1) Environment 

Smart cities can use artificial intelli-
gence to see their effect on the local en-
vironment, global warming, as well as 
the pollution level. Using AI and ma-
chine learning within pollution control 
and energy consumption, allows author-
ities and cities to make well informed 
decisions that are best for the environ-
ment. Smart cities also use AI to detect 
CO2 which can then lead to decisions 
around transportation. 

2) Energy Tracking 

Artificial intelligence can be used within 
smart cities to analyse and track busi-
ness and citizen energy usage, with this 
data it can then be decided where to 
implicate renewable sources of energy. 
This can also show cities where energy is 
being wasted and how it can be saved. 

3) Traffic  Management 

AI technology is being implemented 
within the transportation industry to re-
duce traffic and accidents. A traffic man-
agement technology known as CIRCLES 
has the ability to predict and reduce 
traffic, using deep learning algorithms, 
this can then reduce the pollution creat-
ed by traffic too. AI can also be used 
throughout traffic camera systems to 

detect road crimes in real time, making 
them easier to deal with. 

4) Waste Management 

Smart cities are beginning to use artifi-
cial intelligence within their waste man-
agement, this type of technology allows 
cities to track recycling, and identify 
what can be recycled in the area. Some 
cities in Sydney take this a step further 
and use AI powered robots to sort rub-
bish, as well as clean areas such as lakes 
and rivers. 

5) Public transportation 

Public transport has been innovated 
with the use of AI to be used within 
smart cities. This technology allows pub-
lic transport users to receive and access 
live up dates and tracking, which im-
proves timing and customer satisfac-
tion. Automated busses are also 
planned to be used within cities, these 
can reduce emissions, improve routes, 
and increase the frequency. 

6) Parking Systems 

Using license plate recognition technol-
ogy, car parks are able to detect cars 
that have outstayed hours, this can also 
enforce payments and tickets. When AI 
systems are integrated throughout car 
parking areas, space availability is able 
to be presented to awaiting users. Some 
more advanced technology has the abil-
ity to recommend spaces depending on 
the car. 

7) Controlling Pollution 

Scientists have developed technology 
which uses AI and machine learning to 
analyse the current pollutants and pre-
dict the pollution levels for the next 2 
hours. This type of technology allows au-
thorities to make decisions in advance 
to reduce their effect on the environ-
ment. 

Fjoralba Nasto Smart Cities and how they use technology 
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Smart Cities and how they use technology 

8) Predicting future needs 

Smart cities that are innovating with AI 
technology are able to better predict fu-
ture needs of the people. Using energy 
tracking technology allows cities to 
know when new energy sources are 
needed or when more sustainable 
methods can be implemented. Some AI 
technology can also predict and help 
plan on property developments, this 
means houses are put onto the market 
during periods they are needed.  

8) Maintenance 

A company called RoadBotics has devel-
oped a technology using artificial intelli-
gence that has the ability to analyse 
road imagery to then assess issues and 
produce cost effective solutions. This al-
lows cities to know when and where re-
pairs need to take place, and deal with 
them while saving money. This type of 
technology also improves safety within 
cities as problems will not go unnoticed. 

9) Security 

Security camera footage is typically re-
viewed when a crime has been reported, 
this doesn't prevent or stop crime. Secu-
rity cameras that use artificial intelli-
gence have the ability to analyse foot-
age in real time and detect criminal be-
haviour which can then be instantly re-
ported and dealt with. These cameras 
can also detect people from their 
clothes, allowing the technology to find 
suspects quicker than ever. 

Challenges of a Smart City 
As smart cities offer plenty of benefits in 
a rage of different sectors, there is also a 
big challenge when it comes to security 
of all the technology being used. 

There is a need to ensure smart cities 
are protected from cyber-attacks, hack-
ing and data theft while also making 
sure that the data is reported is accu-

rately, so it can be to the benefit of all 
citizenships and not against them.  

In order to manage the security of smart 
cities there is a need to implement 
measures such as physical data vaults, 
resilient authentication management 
and ID solutions. Some core security ob-
jectives involve: 

Availability - Data needs to be available 
in real time with reliable access in order 
to make sure it performs its function in 
monitoring the various parts of the 
smart city infrastructure. 

Integrity – The data must not only be 
readily available, but it must also be ac-
curate. This also means safeguarding 
against manipulation from outside. 

Confidentiality – Sensitive data needs to 
be kept confidential and safe from un-
authorised access. This may mean the 
use of firewalls or the anonymising of 
data. 

Accountability – System users need to 
be accountable for their actions and in-
teraction with sensitive data systems. 
Users logs should record who is access-
ing the information to ensure accounta-
bility should there be any problems. 

 
Conclusion 
To control all the potential challenges 
that the technology might bring into 
our lives, the government, the private 
sector, software developers, device man-
ufacturers, energy providers and net-
work service managers need to work to-
gether to deliver integrated solutions to 
guarantee full and reliable security for 
its citizens.  

However, I think we can all agree that 
the benefits of creating smart connect-
ed systems of our urban areas and en-
suring sustainability  outweigh any po-
tential risks, making technological de-
velopments and their impact on our dai-
ly lives expand greater than ever. 

Fjoralba Nasto 
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Fjoralba Nasto Smart Cities and how they use technology 

A Glimpse of the next  
CS Uncovered Issue 
 
On the next issue published, we will look 
at a greater depth on how London is 
considered a smart city, and what the 
government’s objectives are on main-
taining this title. 
 

References: 

https://www.twi-global.com/technical-
knowledge/faqs/what-is-a-smart-city 

https://aimagazine.com/top10/10-ways-ai
-can-be-used-smart-cities 

https://
www.ukconstructionmedia.co.uk/
features/2019-smart-city-infrastructure/ 

Visiting a Smart City 
Visiting a smart city will probably make you acknowledge how quickly the tech-
nology is evolving around us and how its every day use affects our ways of living 
within a city.  
Below is a list of leading smart cities around the world: 

Singapore Tokyo 

London Vienna 

New York City Toronto 

Hong Kong Barcelona 

https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city
https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-city
https://aimagazine.com/top10/10-ways-ai-can-be-used-smart-cities
https://aimagazine.com/top10/10-ways-ai-can-be-used-smart-cities
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/
https://www.ukconstructionmedia.co.uk/features/2019-smart-city-infrastructure/
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COMPILER  
CONSTRUCTION 

How Alex Burrows and Lukas Trakimas turned an idea to a  

fully-fledged programming language 

The Art of 
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I still remember how it happened. We’d 
just finished this barely functioning 
maths processor in Python, and one of 
us off-handedly mentioned “ok, so now 
that this done, I think we’re fully quali-
fied to make an entire programming 
language now!”. We laughed about it, 
“Yeah right, like we’d start such an im-
mense project so close to our exams” 
and “There’s no way we’d be able to pull 
it off”, only start working on it five 
minutes later. This is how our custom-
made “written in 1 month” compiler 
works, to convert a high-level language 
into x86 assembly. Feel free to follow 
along with the code yourself at https://
github.com/lxkast/Glory. 

Syntax & Naming 
We started at the point anyone would, 
to design the language! You can’t build 
a compiler without a language to com-
pile. For our language, which we de-
signed rather uninterestingly and within 
5 minutes, we settled on syntax very 
similar to C, with the most glorious 
name possible: Glory. 

You don’t truly appreciate how well de-
signed the C syntax is until you make a 
language around it, we’d find in later 
stages of development that many fea-
tures like semicolons, were the right 
choice. 

Lexer 
With our syntax in hand, it was time to 
develop the compiler! All compilers start 
by taking the string, the code coming as 

text, and breaking it up into little pieces 
for further processing. This is known as 
lexical analysis; that process of accept-
ing characters and breaking them into 
“tokens”. Every number written in the 
text, every symbol, every keyword like 
“int” or “blank” are picked out by the lex-
er and turned to tokens, with any words 
that aren’t recognised as keywords 
turned into identifier tokens. For exam-
ple, the code: 

  
Gets tokenised into: 

 

We run this lexing process because the 
parser (the stage after to understand 
what the code means) gets extremely 
complex and there’s quite a bit of deci-
sion-making involved in picking out 
these tokens that we don’t want to pack 
in there. Whitespace, detecting multi-
character tokens (like keywords with 
“int”), understanding numbers, com-
ments, we want all that difficulty gone 
for the parser and for it to always have 
simple pieces. 

The lexer is quite straight-forward im-
plementation-wise and almost definitely 
the least interesting part of the compil-
er. It’s just a big for loop and switch, with 
a few fancy helpers like “PeekAhead”. 
Below, it handles the character “i”. 

Alex Burrows & Lukas Trakimas The Art of Compiler Construction 

A code snippet for lexical 
analysis of raw text when ‘i’ 
is encontered 

 

https://github.com/lxkast/Glory
https://github.com/lxkast/Glory
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The Art of Compiler Construction Alex Burrows & Lukas Trakimas 

Parser 
Once the code is broken into tokens, it’s 
time to understand what it means and 
form syntax trees in memory to perfect-
ly describe each line in a structured way 
that makes sense. This is known as pars-
ing, and it’s quite a beast! 

The key component to making a good 
parser is to create a grammar out of it. 
This is a definitive guide of exactly how 
the syntax of your language is struc-
tured. This grammar needs to be very 
precise, ensuring it flows in such a way 
that factors in order of operations and all 
kinds of things, but when you do form it, 
that’s most of the parsing work already 
done. (Image of grammar for Glory is at 
the bottom). 

It looks quite complex, but if you really 
look through piece-by-piece, what it’s 
describing is quite simple. Each line in 
this grammar is a rule, a separate piece, 
and when understanding the code, the 
parser starts at the top-most rule and 
slowly, with a chain of if statements, 
makes its way down through them.  

With the grammar written, we can now 
use a technique called recursive de-
scent to quite literally just turn this 

grammar into code. The idea is quite 
simple. For every line (rule), we make a 
new function, and we simply implement 
each rule sequentially through that. For 
instance, here’s the “while” block: 

 
To implement the “while” rule above in-
to code, we create a “ParseWhile” func-
tion, which will: 

1. Move past the “while” token (if this 
function has been called the 
“ParseStatement” has already 
checked and established it is a 
while statement, so we can skip it.) 

2. Call “ParseExpression” to read 
through the condition tokens. 
“ParseExpression” will read as 
much as it can until it encounters a 
token that neither it or its sub-rules 
can handle, which will be the “{“ 
given valid code. 

3. Verify there is actually a “{“ here, 
and skip past. 

4. Call ParseStatements to continually 
read statements. Once again, this 
will return as soon as it’s lost on 
what to do, should be the “}” token. 

5. Verify there’s a “}” and read it. Our 
while is done. 

The complete grammar defining Glory’s syntax 
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If you visit the project and navigate 
around, you’ll find the “Parser.cs” class 
with the “ParseWhile” function precisely 
doing this in the code. Now just imagine 
that repeated for every single rule, 
alongside a bunch of type checking and 
more – and that’s the parser! The most 
impressive function in the parser is 
probably the function definition han-
dling one, which as you can see from 
the rule is a very complex function in-
deed! 

We realized that having semicolons in 
our C-derived language can be quite 
helpful with error handling. Our parser 
does not “need” semicolons to under-
stand valid code, all the functions will 
naturally back out as you hit the end of 
the line and they no longer know what 
to do with the next token. However, if 
code is written incompletely and a 
statement makes no sense at all, with-
out some form of clean line separating 
characters like semicolons, the parser 
has a very difficult job trying to realign 
itself with what’s going on to continue 
reading to try and find “all errors” in-
stead of just one, and semicolons help 
them out a lot with it. In the end this 
didn’t impact our parser as it has simple 
error handling due to time constraints, 
but we realized this is a very valid use of 
semicolons in the code. (Doesn’t help 
C++’s errors though…) 

Code Generation 
The final stage of the compilation pro-
cess is to take the statements (tree per 
line) from the parser and generate as-
sembly code out of it. At the moment, 
our code generator literally creates text 
assembly code that must be given to an 
external assembler, though its architec-
ture is intentionally designed so it’s easy 
to swap it to output machine code di-
rectly someday.  

 

 

 

The Calling Convention 
Before we could dive into generating as-
sembly, we had to first set a few stand-
ards for exactly how the final assembly 
needs to look. One such standard was 
the calling conventions. A calling con-
vention describes how memory needs 
to move around when you call a func-
tion. This includes a description of what 
has to happen in registers and what has 
to happen to the stack (a piece of 
memory every thread in a process has 
for keeping track of local function data). 

Consider this function: 

The first step to calling this function is 
the “add(…);” line, off in another function. 
There’s quite a lot of complexity to pull-
ing this call off properly, and a lot of ad-
ditional considerations not described 
here, such as backing up in-use regis-
ters. But at its simplest, this is what the 
stack memory should look like as soon 
as we enter the body of a function. The 
stack grows downwards, so the top is 
the stuff pushed first: 

Alex Burrows & Lukas Trakimas The Art of Compiler Construction 
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Alex Burrows & Lukas Trakimas 

Arguments are pushed onto the stack in 
reverse order with a return address de-
scribing where the CPU should jump to 
when returning from the function. In 
practice, these stack operations are 
done with two “push” instructions for 
the arguments and one x86 “call” in-
struction which handles both the return 
address and function jump automatical-
ly. 

 

After this initial setup from the calling-
side, we jump into the function and it’s 
down to the function itself to take con-
trol of the stack as necessary, and we do 
this by kicking the function off with 
what’s known as a prologue. The job of 
the prologue is to set up the function’s 
“stack frame”, which is the region of the 
stack the current function is using for its 
local variables. To do this, the machine 
has a second register entitled 
“ebp” (base pointer) designed to track 
the beginning of the current stack 
frame, to allow a sort of “start pointer” 
and “end pointer” format to be in place. 
Here’s what the prologue looks like in 
assembly: 

 

The prologue starts by backing the base 
pointer up so we can return the stack 
frame back to how it used to be when 
we return, then configures ebp and esp 
such that they’re showing room in place 
to store every local variable the function 
has in all branches.  

Here’s how memory looks after the pro-
logue finishes: 

 

Now we have a clear frame for our local 
variables, with the parameters and extra 
info at a predictable amount behind the 
unmoving ebp register, and the local 
variables at a predictable amount 
ahead. From here, we can execute the 
function’s actual code, which can use 
offsets around ebp to access relevant 
things at it pleases. 

After the function’s body completes, we 
have to restore all the stack pointers 
back to how they were before. Any path 
that returns from the function, whether 
it’s from the middle or the end will jump 
to this epilogue logic at the end, and it’s 
given below: 

 

Once the function returns, the stack 
looks like this – note that we don’t both-
er to erase unused bits of the stack, so 
all the function’s stuff will happen to be 
sitting around ahead of the stack point-
er until it gets overriden.  

 

The Art of Compiler Construction 
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The calling convention also describes 
how data must be returned from the 
function, which is to use the eax register 
for any < 8 byte value or, in the case of 
arrays, for the caller to make some space 
on the stack above the parameters that 
the function can copy its return value 
into for the caller. 

Generating operations 
The assembly we generate to perform 
the actual operations in the code fre-
quently needs to use registers to tempo-
rarily hold onto data. For instance, to 
perform an addition, the CPU requires 
that the two values to be added must be 
moved to registers first. When you’re in 
the middle of a line with many nested 
operations going on, you’ll often need 2, 
3, 4 or maybe even 5 registers all “in use” 
at once. We need a reliable system that 
allows operations to be assigned regis-
ters at request, and this is precisely what 
we do. We have 5 registers free for use, 
which we dub the “scratch registers”. 
These registers have no fixed purpose 
and a table of which are in-use at any 
time during generation is kept. Then the 
code for generating all the operations 
simply asks “Can I have a register for 
<this length of time>”, and it’ll be as-
signed. 

 
A significant bulk of the work in the 
code generator comes from the Com-
pileNode() function, which has the re-
sponsibility of generating assembly to 
represent a node on a tree. This function 
takes the node to compile, and where 
the result of said operation may go – 
which could be a register, or place on 
the stack, whatever the node above the 
current one said it wants this to go into. 

 

 

 

Let’s run through the steps for the fol-
lowing function: 

 

As soon as the prologue finishes genera-
tion, the compiler sees the return state-
ment here, and this in turn calls Com-
pileNode with the tree involved (a + b), 
and eax as the destination. 

From here, CompileNode will switch on 
what type of node it’s been given, a plus 
node in this case, and do the following 
for the addition: 

1. Compile the left-hand of the addi-
tion (accessing a) through a recur-
sive call, outputting the value of 
that into our destination. 

2. Allocate a scratch register tempo-
rarily, in this case EDI, and while it’s 
in use: 

3. Compile the right-hand node, out-
putting into the temporary register. 

4. Use the add instruction with the 
destination and right-hand node 
involved (the x86 instruction out-
puts directly into the left-hand side, 
the destination). 

A significant amount of the code gener-
ation is just about following a pattern of 
instructions for each operation, albeit 
usually with different registers depend-
ing on what the context around the op-
eration was, and a few decisions to vary 
depending on where the destination is. 

Register EDI ESI ECX EBX EDX 

Available? Yes Yes Yes Yes Yes 

Alex Burrows & Lukas Trakimas The Art of Compiler Construction 
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Alex Burrows & Lukas Trakimas 

Arrays 
Arrays were quite the fun thing to im-
plement into Glory because they came 
with multiple challenges. The struggle 
started with returning arrays, we had to 
revise our calling convention mid devel-
opment to, quite literally, make room for 
them, as they can’t just fit in eax and 
need to go across the stack. Here’s a dia-
gram of how the calling convention de-
scribes the stack when there’s an array 
return type: 

But returning arrays was only the begin-
ning. The idea of having the 
“destination” passed into 
“CompileNode” pulls extremely satisfy-
ing results, it allows every node to be 
written completely independently with-
out needing to pack in logic of what’s 
happening above it in the tree. Com-
pileNode is quite simply told by the 
node above “please put the result here” 
and it does it, every node can be written 
really modularly like this… Until array in-
dexing came in.  

Unfortunately, indexing wasn’t kind to 
our destination system at all because 
unlike everything else it doesn’t simply 

take the result of what it’s indexing, it 
actually needs to reach at the thing it’s 
indexing.  

Consider the code “a[1]”. If this wasn’t an 
indexing node, the generator would just 
say “Please compile this ‘a’ node I see 
here, whatever’s necessary to do that, to 
output into <this place>” and then “And 
now I’ll process that”, but if we’re index-
ing an array, you don’t expect it to be 
moving “a” around anywhere! You ex-
pect it to actually access a memory off-
set ahead of a. We could have this be 
really, really dumb, and indeed allocate 
an entire temporary space for “a” to 
move into just to index that, so it makes 
a brand-new copy of “a” every single 
time you index it but that’s really horri-
ble, even for Glory’s optimisation stand-
ards. 

There are some potential architectural 
solutions to this, we could tweak the 
destination system and try to make it 
even smarter while still keeping as 
much modularity, or we can let the in-
dex node create the pointless copy and 
have an optimisation layer after the 
code generator (discussed later) detect 
in “hindsight” that there’s a redundant 
copy and remove it. I can’t confirm but I 
suspect this is precisely what the larger 
compilers do, they likely come up with 
very stupid things like this initially, but 
further steps pick up on them because 
unlike Glory they don’t bake their “first 
draft” straight to assembly. But, because 
of time restrictions, we went down nei-
ther path, and we decided to simply 
hard-code support for different bases 
into the indexing node. Thankfully, 
there’s only two things you can actually 
index in Glory, and that’s variables and 
function calls. (Or, so we thought…) So, 
we simply hard-coded a check into the 
“index node” to look at what node it’s in-
dexing and do the relevant thing for 

The Art of Compiler Construction 
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each. Variables were easy enough, 
though indexing function call results 
was simply disgusting because it effec-
tively requires the entire call generating 
system, which averaged 50 lines of code, 
to be split in two so for an index variant 
some extra instructions can be put right 
in the middle of all the call stuff.  

Unfortunately, we soon realized, that 
there’s a third thing you can index, and 
that’s… An index node. If you have multi-
dimensional arrays in your code, which 
Glory supports, you can very validly do “a
[x][y]”, which is an index node within an 
index node. You can also return multi-
dimensional arrays, index the returns of 
said multi-dimensional arrays, and 
countless more fun things! Technically 
there really isn’t anything special about 
multi-dimensional arrays, they are quite 
simply arrays that contain arrays, but it 
was added suffering to make sure we 
also fully supported all combinations of 
operations with them in place. 

Code Optimisation 
The code the compiler generates is ex-
tremely inefficient in places. The below 
code generates this assembly:

 

 

If you watch the compiler output closely 
there is very broad range of stupid 
things happening. Subtracting 0 from a 
register? Code after a jump instruction? 
If you were to ask a human to write the 
isNegative() function in assembly they 
might give you this instead. 

 

Far smaller and faster than the junk out 
of the compiler. The compiler outputs 
such terrible code because it has little 
optimisation in it, due to time con-
straints.  

Alex Burrows & Lukas Trakimas The Art of Compiler Construction 
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Alex Burrows & Lukas Trakimas 

If we were to implement aggressive op-
timisation, there’s two places we can do 
it. One is to add optimisation, extra intel-
ligence, into the code generator as it 
currently is. This can certainly go some 
way and there are indeed some rather 
“high-level” optimisations we could add 
to the generator about how to struc-
ture/order the ASM (short for assembly) 
to better flow as a whole. However, 
simply adding tricks to the code genera-
tor alone won’t be enough to give us re-
ally clean assembly. In fact, it’s near im-
possible to do all the optimisations you 
see above directly in the code generator. 
This is because not only can the code 
generator not foresee what operations 
are going to happen later (which is very 
important) but the modularity of the 
code generator also means making op-
timisation decisions about how exactly 
multiple nodes are interacting with 
each other would simply be a mess. But 
this is very easily fixed. 

How it could be made more opti-
misable 
In A-level it’s heavily implied that optimi-
sation happens “after the code is gener-
ated”. This statement is partially true, 
because optimisation is a thing that can, 
and does, happen at literally every stage 
of compilation, it’s not just after. Many 
compilers have optimisations happen 
during the initial code generation, like I 
just described. However, it is correct that 
most compilers will do a large bulk of 
their optimisation after some kind of ini-
tial “code generation phase”, the one 
that we currently end on. To do this, 
they have the same code generator that 
we currently have, but tweak it to, in-
stead of outputting ASM directly, gener-
ate a tree. Unlike the parser’s rather ab-
stract tree, this tree describes in assem-
bly-level detail every little step the ma-
chine may need to take to run the pro-
gram. By doing this, we’ve now thrown 
away all the “high-level” niceties of 
statements and nodes, all the code gen-

erator leaves us with this massive dump, 
this singular massive flow of operations. 
Every time need to move in memory, 
every time we need a temporary value 
for something, every little offset access 
or addition/subtraction, it’s all broken up 
in this tree. And what’s really nice about 
this now, is this is much more optimiza-
ble. There’s no longer statement and 
node boundaries in the way, it’s all just 
one big thing, and now we can look 
ahead to cross-reference, because 
there’s a solid first draft there. From this 
point it really is just a matter of trying to 
brute simplify, through supports for all 
kinds of tricks, what’s in the tree as 
much as possible. And once the optimis-
er is happy with the result, final registers 
can be assigned, and ASM can be writ-
ten. 

If we took the compiler down this path 
and changed the code generator to out-
put a tree instead of ASM, we’d likely call 
it the “lowering phase” instead. 
“Lowering” is a common term in compil-
er design that means to take the high-
level stuff and nodes and breaks it into 
low-level steps, precisely what the gen-
erator would be doing. 

As of current, the only notable optimisa-
tion our compiler performs is dead code 
elimination within functions. If given the 
following code: 

 

The Art of Compiler Construction 
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The parser, as that’s the component 
that has to perform “flow checking” to 
make sure the input code always re-
turns, will remove the redundant “n += 
4” and “n = 0” lines which is indeed a 
form of optimisation, performed at a 
very high-level. 

Final words 

Our language suffers the most from a 
lack of features – strings, floats, lists and 
“for” were all initially planned, but cut to 
shorten development. While the code 
generator works fine there is one un-
tested scenario in which it may fail: 
When it runs out of scratch registers. At 
the moment, it quite literally explodes 
here (through an error message), but it 
is possible to implement unused regis-
ter backups onto the stack, just like how 
operating system may use virtual 
memory to swap pages back and forth, 
we can use the stack to hold some regis-
ters to make some room. However, 
there are a considerable number of lay-
ers to doing this, you have to really care-
ful you don’t mis-match the pushes of 
and pops of that with pushes and pops 
the operations are laying down and it’s 
the kind of thing that’d be significantly 
easier to do if had more post-lowering 
stages. Thankfully, in all of our testing 
and development we’ve yet to find a 
case where the 5 scratch registers aren’t 
enough.  

Writing a compiler is a challenging but 
rewarding task, requiring a deep under-
standing of low-level computer architec-
ture and hardware. The moral of the sto-
ry here is: If you just want to make a pro-
gramming language – make it an inter-
preted language, it’s 1000 times easier. 

Alex Burrows & Lukas Trakimas The Art of Compiler Construction 
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Predicting Stock prices with Long Short-Term Memory Thanish Senthil 

Did you know you can leverage the use 
of computers to make predictions of the 
future? As astonishing as it sounds, it is 
possible with the use of Machine Learn-
ing algorithms, which make predictions 
by finding on patterns across huge 
amounts of data, but it doesn’t mean it 
is always accurate. In this article we will 
be exploring a Machine Learning model 
called Long Short-Term Memory (LSTM) 
and its applications for predicting the 
future prices of a stock.  

What are Long Short-Term 
Memory and Recurrent Neural 
Networks? 

Long Short-Term Memory is a type of 
Recurrent Neural Network (RNN). An 
RNN is designed to process sequential 
data - data that has a chronological rela-
tionship - such that points in the dataset 
are dependent on other points in the 
dataset. Examples of Sequential Data 

include Time Series, where data is col-
lected at regular time intervals (Stock 
Price data is what we will be using for 
the Time Series data), Natural Language 
Text and much more. An RNN remem-
bers previous time steps and uses that 
to make predictions. 

Imagine you are trying to predict the 
next word in a sentence, if you look at 
the previous words, you will have a bet-
ter idea of what the next word is likely to 
be. This is simply how RNNs work, they 
use an internal memory to process se-
quences and use those to make a pre-
diction. These features are not present 
for a classic neural network such as a 
feedforward neural network. 

Why is LSTM used instead though? 

As previously stated, LSTMs are a type of 
RNN, but the internal memory used in a 
LSTM network allows them to store long
-term dependencies in the data. The 
memory cells consist of gates which are 
the input gate, forget gate and output 
gate and they regulate the flow of data, 
and they are used to determine whether 
data should be retained or forgotten. 
This is why Long Short-Term Memory 
networks are used instead of Recurrent 
Neural Networks for Stock Price Predic-
tion. 

PREDICTING STOCK PRICES 
with Long Short-Term Memory 
Thanish Senthil 
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What is a neural network? 
Since we’ve established that Long Short-
Term Memory networks are a type of 
Recurrent Neural Networks but what is 
a Neural Network? Neural Networks 
work similarly like the neurons in your 
brain. Neural Networks consist of multi-
ple layers of interconnected nodes 
which we refer to as neurons which pro-
cess and transform data. The layers in-
clude an input layer, hidden layers and 
an output layer. Neural networks are 
weighted, directed graphs so each node 
is connected to another node and has a 
weight. When an input is passed into an 
input layer, the data is redirected into 
the hidden layers. As the input is propa-
gated through the network, each layer 
then performs mathematical operations 
on the input such as multiplying the in-
put by the weight and adding a bias 
term. Adding a bias term allows the net-
work to adjust its output based on a 
constant value regardless of the input 
data. 

Now that all the theoretical stuff is out 
the way, lets implement LSTM to predict 
Stock prices for the next day in Python! 
We will be predicting J.P. Morgan stock 
prices. 

 

 

 

1. Firstly, we need to gather stock 
price data of JPM, using these li-
braries in Python. We simply down-
load the Stock price data from Jan 
1st 2013 to 22nd March 2023 and save 
all the data into a CSV file. 

2. Now we need to import the neces-
sary libraries which we will be using 
for this project. Pandas will be used 
for reading off the csv file, NumPy 
for creating NumPy arrays, mat-
plotlib for plotting data, scikit-learn 
and Keras for creating and training 
the machine learning model. 

3. This step we add the Stock Price 
data onto a data frame and plot the 
closing prices using matplotlib. 

Thanish Senthil Predicting Stock prices with Long Short-Term Memory 
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Predicting Stock prices with Long Short-Term Memory Thanish Senthil 

4) Now we need to determine what 
length of the NumPy array we will 
be using for training the machine 
learning algorithm. In this code, we 
create a new data frame and create 
a NumPy array based on just Clos-
ing prices and take 95% of the 
length and round it to the nearest 
integer. 

5) The next crucial step is to normalise 
the data using Min-Max scale. The 
purpose of normalisation is so that 
data has a fixed range of values, in 
this case, 0 and 1. When data is on 
similar scales, it removes bias as an 
algorithm may give more weight to 
one input. Normalisation will re-
duce numerical problems during 
training. 

 

 

 

 

 

 

 

 

6) We now specify what the training 
data will be then we create two 
empty lists which is used to store 
input and output sequences for the 
LSTM. We create a sliding window 
of 60 time steps for each input se-
quence. The loop appends the pre-
vious 60 rows to ‘x_train’ and the 
next row to ‘y_train’ starting from 
the 61st row.  

7) This step involves building the 
LSTM model and training it using 
Keras. We create two LSTM layers, 
which are layers consisting of neu-
rons that receive input from all of 
the neurons in the previous layer. 
After, we optimise our model with 
the Adam optimiser and minimise 
mean-squared error. It is then 
trained on the training data we pro-
vided. 

8) Now we prepare the testing data 
set. We slice the testing data set in-
to an input and output data and 
make predictions on the input data 
using a trained model. The predict-
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ed values we obtained are trans-
formed into the original scale. A 
Root Mean Squared Error is also 
calculated. An RMSE is simply the 
standard deviation from the actual 
values and the predictions. We had 
actually obtained a RMSE of 4.77 
which is relatively small as the stock 
price is around 100-150 dollars 

9) The very last step involves plotting 
the data and visualising it to see if 
our predictions were accurate. This 
code splits the chart showing 
which data was used for training, 
which was used for predictions and 
the actual value. 

Conclusion 
It is evident that the program computes 
a prediction that has a small standard 
deviation (RMSE of 4.77 from the actual 
values). This model isn’t entirely great for 
predicting the exact prices, but it pro-
duces predictions which follow a trend 
that is extremely similar to the actual 
values. It is worth noting that predicting 
stock prices is notoriously difficult. Stock 
price movements are stochastic pro-
cesses which follow Brownian motion. 
This machine learning model does not 
take into account any external factors 
such as news, volatility, interest rates,  
etc., only historical price data. However, 
it is interesting how machine learning 
can be applied in the stock market and 
helps analyse large amounts of data 
which can be difficult for human ana-
lysts. 

Thanish Senthil Predicting Stock prices with Long Short-Term Memory 
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Competitive Programming Vol. 2 Vladimir Filip 

In the previous edition we covered the 
basics of asymptotic analysis, a way to 
represent the running time and 
memory usage of an algorithm as a 
function of its input size. In this article 
we will cover the design of various data 
structures and the time complexity of 
operations applied to them. 

What are data structures? 

A data structure stores and organises 
data; it is a way of arranging data so that 
it can be accessed and updated effi-
ciently. 

There are various ways to classify data 
structures, but all of them can be split 
into two groups: linear data structures 
and non-linear data structures. In this 
edition we shall cover linear data struc-
tures, their design and the benefits and 
drawbacks of using them. In-depth 
knowledge on this allows you to write 
faster and more memory-efficient solu-
tions and can even change the way you 
approach a given problem. 

 

 

 

 

 

Linear Data Structures 
These are data structures that are de-
signed to store its elements in a se-
quence, with one data element coming 
after another.  There are four linear data 
structures: arrays, linked lists, stacks, 
queues and hash tables. 

The Static Array 
Insertion: O(n), Read: O(1), Deletion: O(n), 
Creation: O(n) 

The static array is the simplest of all data 
structures, storing a fixed number of ele-
ments in memory and allowing them to 
be accessed by index. The elements are 
stored in sequence in memory, and so 
given the memory location of the start 
of the array and the index, the memory 
location of any element in the array can 
be obtained and the element can be 
read. This makes any read operation on 
the elements O(1), as the time to read 
the element does not change with the 
size of the array. Therefore, you could 
say that the memory space storing the 
elements is contiguous. 

Competitive Programming Vol. 2 
Intro to Data Structures 
Vladimir Filip 

A diagram of how a static 
array is stored in memory, 

with all the elements stored 
in sequence and in one con-

tiguous block. 
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This contiguous memory space first has 
to be allocated (marked by the operat-
ing system so that data stored cannot 
be overwritten), making the time com-
plexity of creating a static array O(n), 
with n being the size of the array, as the 
amount of memory allocated is directly 
proportional to the array size. 

If an element at index i is deleted, or an 
element is inserted at index i, from an 
array of size n then the n – i elements to 
the right of that element have to be 
shifted left in the case of deletion or 
right in the case of insertion in order to 
preserve the order of elements without 
leaving gaps in the array. This makes the 
time complexity of insertion and dele-
tion O(n – i), and since i can be anywhere 
between 0 and n – 1, this simplifies to O
(n). 

Arrays are commonly used due to their 
fast access times, but due to insertion 
and deletion happening in linear time, 
other data structures may be needed if 
those are the main operations you wish 
to carry out. 

Dynamic arrays are also used in lan-
guages such as Python and JavaScript, 
where the size of the array can be in-
creased and decreased as needed. Inser-
tion and deletion operations are even 
slower on dynamic arrays (also known as 
‘lists’), for if there are more elements 
needed to be stored than the number of 
elements the allocated memory space 
can hold, a larger block of memory has 
to be re-allocated, and all the elements 
have to be copied to the new memory 
space.  

The Linked List 
Push: O(1), Pop: O(1), Creation: O(1), Read: 
O(n), Insertion: O(n), Deletion: O(n) 

A linked list is similar to an array, in 
which it is used to store multiple ele-
ments in one structure, but it does away 
with contiguous memory location, in-

stead consisting of a number of smaller 
elements stored in random locations in 
memory, each containing the data value 
and a pointer (variable storing a 
memory address) to the next element. 
The elements are ‘linked’ through these 
pointers, hence the term ‘linked list.’ The 
linked list can also store ‘head’ and ‘tail’ 
pointers to store the location of the first 
and last elements in the linked list to al-
low for the insertion and deletion of ele-
ments on either side.  

Figure 2: A diagram of how a linked list is structured, 
some linked lists may contain two pointers in each 
element, one to the previous element and one to the 
next element. This is a doubly linked list. 

To remove or add elements to the linked 
list all that is needed is to change the 
pointers (variables storing memory ad-
dresses) on elements either side of the 
new element, instead of having to shift 
n elements as is the case with an array, 
making insertion and deletion time 
complexity in linked lists O(1) relative to 
the linked list’s size. However, this is the 
case of push and pop operations where 
elements are being added or removed 
either side of the list. Inserting or delet-
ing elements in the middle of the list re-
quire traversing an average of n ele-
ments through the linked list through 
their pointers until the desired location 
is reached, making the insertion and de-
letion of elements at index i O(n), with n 
being the size of the linked list. The only 
allocation required is to allocate enough 
memory for the new element being in-
serted and the pointer, which is not af-
fected by the size of the linked list. 
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A linked list is generally initialised as 
empty and elements are pushed after-
wards, making creation of a linked list a 
constant-space operation. 

Reading an element in the middle of a 
linked list also requires traversing the 
linked list from the start of the list to the 
required element through its pointers. 
The number of elements required to 
traverse through grows linearly with the 
size of the linked list, making the read 
time complexity O(n), with n being the 
size of the linked list. 

Therefore, a linked list is mainly used if 
the main operations used are insertions 
and deletions, and it lays the foundation 
of other data structures such as stacks 
and queues. 

The Stack 
Push & pop: O(1), Creation: O(1), Peek: O
(1), Read/insert/delete at index i (0 < i < 
n): O(n)  

A stack is a linked list where all inser-
tions and retrievals are carried out at the 
end of the linked list, often referred to as 
the ‘top’ of the stack. The stack therefore 

follows a Last In First Out design, where 
the last element ‘pushed’ to the top of 
the stack is the first element retrieved, 
or ‘popped’ from the stack. 

Use cases include any scenario where 
you need to constantly add elements 
and retrieve the most recently added 
element, with a stack allowing you to do 
that in O(1) time. 

The Queue 
Push & pop: O(1), Creation: O(1), Peek: O
(1), Read/insert/delete at index i (0 < i < 
n): O(n) 

A queue is also a linked list, where push-
ing (also known as enqueuing) an ele-
ment and popping (also known as 
dequeuing) an element happens at op-
posite ends of the linked list. The queue 
therefore follows a First In First Out 
(FIFO) design, where elements are 
popped in the exact order in which they 
are pushed. 

This makes them great for breadth-first 
traversal of trees, or traversal of permu-
tations where you want permutations of 
the same recursive depth to be consid-
ered consecutively. They can also be 
used for data buffers due to O(1) push 
and pop time complexities. 

Figure 3: A diagram of a stack. There is often a mis-
conception that stacks are implemented using ar-
rays rather than linked lists, but this is not the case, 
for if an array was used it would not be possible for 
push/pop operations to occur in O(1) time and for the 
size of the stack to be dynamic. 

Figure 4: A diagram of a queue, consisting of front 
and back pointers which are used for enqueuing 
(adding an element to the queue) and dequeuing 
(popping an element from the queue) respectively. 
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The Hash Table 
Creation: O(1), Read/Write: O(1) 

Also known as a dictionary in Python, 
the hash table is a data structure that 
stores data in the form of key-value 
pairs, allowing values stored in the struc-
ture to be identified using the given key. 

Internally, hash tables consist of a static 
array, with each element being referred 
to as a bucket. 

Modern hashing functions are made so 
that they produce unique numbers for 
as many different keys as possible, as-
signing each key-value pair a unique 
bucket. However, collisions can still oc-
cur, where different keys are hashed to 
produce the same number. The bucket 
then becomes a linked list and both the 
values in both key-value pairs are stored 
in there.  

If the internal array is very small, and/or 
if there are a very large number of ele-
ments, elements could end up being in 
stored in very long linked lists, making 
the read-write time complexity O(n) ra-
ther than O(1). 

Therefore, while hash tables are very 
useful as caches (due to quicker access 
times), they must not be over-used, for if 

they become large enough to lead to , 
any performance benefits are lost. 

Summary 
In this article we have covered four line-
ar data structures, their design and po-
tential use cases. However, the exact 
way in which you can use them in code 
varies from language to language, and 
so I highly encourage you to look up 
how to use these structures in your cho-
sen language and practise using them. 

In the next issue, we will cover the de-
sign and characteristics of non-linear 
data structures, such as graphs, trees 
and heaps, as well as popular algorithms 
that use linear and non-linear data 
structures to their full potential for high-
ly efficient solutions to more abstract 
problems. 

Figure 5: A diagram of a hash table. ‘Buckets’ are of-
ten used to refer to the data structure in which values 
are stored,. 
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With over 600 different active distribu-
tions, 32.8 million users (not including 
the 1.6 billion users of Android), and over 
1 500 collaborators working on the Linux 
kernel, it is believed that it would take 
thousands of years to rebuild the Linux 
kernel from scratch. The operating sys-
tem of choice for the hardcore develop-
er, Linux has cemented its place in the 
OS landscape as one of the most reliable 
and refined systems to ever exist, pow-
ering everything from the tiny Raspber-
ry Pi to the mighty TOP500 supercom-
puters. But what are the origins of Linux, 
and how did it grow into such a vast 
ecosystem? 

In the 1980s, the dominant operating 
systems were MS-DOS, Unix and other 
Unix-like systems. The first version of 
Unix was released in 1969 and already 
had a strong developer following. In 
1974, it was rewritten entirely in C and 
became the first portable operating sys-
tem, and in the late 1970s, a number of 
commercial variants of Unix had been 
produced by the likes of Microsoft, Sun 
Microsystems and IBM. However, the 
main issue with all of these operating 
systems was that they were proprietary; 
their source code was kept completely 
hidden from other developers. 

In the formative years of operating sys-
tems, this led to several issues. A partic-
ular incident, recounted by one Richard 
Stallman, was when an especially an-
noying printer could not be fixed be-

cause the users had no access to the 
source code of its drivers. The lack of 
flexibility introduced by proprietary soft-
ware in peripherals and system software 
also prevented collaboration between 
developers and reduced the control that 
a user had over their own system. 

The rise of proprietary software led Stall-
man to launch the GNU (Gnu's Not Unix) 
project in September 1983, with the aim 
to produce a completely free operating 
system, which would allow users to 
study the source code, share the soft-
ware, modify its behaviour, and publish 
their own version of the software. In this 
way, the freeware (later including the 
term 'open source') movement had be-
gun. The GNU GPL (General Public Li-
cense) was released soon after and by 
the 1990s, many elements of what 
would be the GNU operating system 
had been created and were all free and 
open source. However, the project was 
incomplete; it lacked several low-level 
features and still did not have a com-
plete kernel. Something was needed to 
fill that last gap, to make Stallman's vi-
sion of an open source operating system 
finally become a reality. And that some-
thing was the creation of a certain 21-
year-old student at the University of Hel-
sinki. 

Linus Torvalds began work on his own 
operating system kernel in August 1991. 

A (Brief) History of Linux 
Constantin Filip 
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Originally called Freax and later Linux, it 
was inspired by the Unix-like Minix OS 
produced by Andrew Tanenbaum.  

Torvalds originally began developing 
Linux on a Minix system using Minix com-
ponents, and by September, v0.01 of the 
kernel was posted on ftp.funet.fi, the Uni-
versity of Helsinki's FTP server. A defining 
feature of Linux which separated it from 
Minix was its use of a monolithic kernel 
(i.e. the entire operating system works in 
the kernel space, a section of the virtual 
address space used specifically for run-
ning the kernel and some device drivers, 
but most importantly, the kernel space 
cannot directly access the userspace and 
vice versa), compared to Minix which used 
a microkernel. By the end of the year, Tor-
valds already began to receive code for 
new features sent to him from other peo-
ple; this marked the start of Linux as a col-
laborative project, one which would grow 
to thousands of developers around the 
world.  

In 1992, Torvalds adopted the GNU GPL 
license, after originally publishing Linux 
releases under his own license to restrict 
commercial activity. This marked a pivotal 
moment in making Linux one of the most 
prominent examples of free, open-source 
software. This meant that anyone could 
view the source code and modify their 
version of Linux in any way they wanted. 
Soon, all Minix components were replaced 
by ready-made GNU features, and devel-
opment on Linux began to move away 
from Minix and continued on existing 

Linux systems.  Developers worked on in-
tegrating GNU features to produce a fully-
fledged operating system. In March 1994, 
the first production version of Linux was 
released (although two years later than 
Torvalds had anticipated). By then, the OS 
already included several complex features 
for the time including multitasking, man-
agement of virtual memory and a multi-
threaded file system.  

A major aspect of Linux that led to its pop-
ularity was the ability for developers to 
create distributions of Linux. A distribu-
tion, or distro for short, is an operating sys-
tem which includes the Linux kernel, GNU 
tools and libraries together with a pack-
age management system. 

Linux is typically installed on a machine as 
a particular distribution. The rise of the 
Linux distros is a result of the GNU philos-
ophy, but also because of the architecture 
of Linux itself. The kernel is divided into 
various self-contained subsystems, each 
of which has a defined function. They indi-
rectly interact with each other using func-
tion calls and shared data structures, with 
each subsystem further divided into dis-
tinct modules. This modularised structure 
is what made mass collaboration on Linux 
possible; it allowed many independent 
developers to contribute to its develop-
ment without interfering with the work of 
other developers. 

The oldest Linux distro still actively main-
tained today, Slackware, was first released 
in July 1993. 

Over time, many other popular Linux dis-
tributions began to be released. Each dis-
tribution was created for a specific need, 
with a particular design focus. In 1994, 
Debian was released, noted for its stability 
and security and ability to run on a wide 
range of devices. Commercially backed 
distros maintained by software compa-
nies appeared, most notably Ubuntu 
(based on Debian) and Fedora, while oth-
ers remained entirely community driven. 
Distros designed for specific machines, 
such as servers and embedded devices 
also appeared, as well as for specific user 
groups such as scientific communities.  

Linus Torvalds — the creator of Linux 
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Collaborators continued to add more and 
more features to Linux, including sym-
metric multiprocessing, improvement of 
its graphics stack to use modern GPUs, 
wireless drivers and advanced peripheral 
support. In 1997, the first version of 
GNOME (GNU Network Object Model En-
vironment) was released, a desktop envi-
ronment for Linux and other Unix-based 
operating systems, which has become the 
default environment of Debian, Fedora 
Linux, Ubuntu, SUSE Linux Enterprise and 
many other distros. GNOME provided a 
simple and intuitive UI design which 
made Linux much more accessible to less 
experienced developers. 

In November 2007, Android, a mobile OS 
based on Linux, was released. It contin-
ues to be developed by a group of devel-
opers known as the Open Handset Alli-

ance and sponsored by Google. Since its 
original release, it has become the most 
popular operating system, with over 
three billion active users. 

Today, Linux runs on billions of different 
devices and the kernel has amassed 
over 27.8 million lines of code as of 2020. 
It is one of the dominant operating sys-
tems on supercomputers, servers and 
embedded systems, and continues to 
grow in popularity in the desktop PC 
market. In the future, the kernel will 
continue to be updated with all the lat-
est drivers and technologies; Linux is ex-
pected to continue to play a major part 
in the Internet of Things, the motoring 
industry, cloud infrastructure, personal 
computing devices, and many other 
technological innovations. 

Here is a (simplified) dia-
gram of the Debian family 
tree. You'll probably need a 
magnifying glass to see 
some of these distros. The 
chart also only goes up to 
2011, so 12 years later at the 
time of this publication of CS 
Uncovered, it's probably 
grown quite a bit.  

And this is just the distro 
family tree for Debian 
alone, so it's just a fraction 
of the full family tree of the 
whole of Linux. 
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